Computer Science & IT
Published on Computer Science & IT (https://www.csit.iisuniv.ac.in)

Home > Data Analytics Using R

Data Analytics Using R [1]

Paper Code: 
25CBDA414
Credits: 
03
Periods/week: 
03
Max. Marks: 
100.00
Objective: 

The course will enable the students to

1. To study  and  learn  the  concepts of predictive analysis with the  tool R.

2. To develop their  skills on data analysis on large  data sets using  R.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

 

 

 

 

 

 

 

 

 

 

 

 

 

25CBDA414

 

 

 

 

 

 

 

 

 

 

 

Data Analytics Using R (Practical)

CO217. Apply

analysis tool R to solve practical problems in a variety  of disciplines. CO218. Apply basic and  advanced

statistical techniques used in data science research.

CO219. Analyse  large sets of data to gain useful  problem understanding. CO220. Implement R methods for data visualisation

CO221. Evaluate the

statistical tests on real world  data sets. CO222.Contribute effectively   in   course- specific  interaction

Approach in teaching: Interactive Lectures, Discussion, Demonstration

 

Learning activities for the students: Self-learning assignments, Quiz activity, Effective questions, presentation.

Class test, Semester end examinations, Quiz, Assignments, Presentation.

 

Using R Studio:

1) Introduction to R: Logical Arguments, Missing Values,  Characters, Factors and

Numeric, Help in R, Vector  to Matrix, Matrix Access

2) Data Frames, Data  Frame Access,  Basic Data  Manipulation Techniques, Usage  of various apply  functions – apply,  lapply,  sapply  and  tapply, Outliers  treatment.

3) Charts (Bar,  Pie, Histogram)

4)   Exploratory Analysis: Measures of Central  Tendency, Measures of dispersion

5) Discrete Probability Distributions: Binomial,  Poisson, Continuous Probability

Distribution: Normal  Distribution.

6) Parametric tests (applications of chi-square test, t test and  F test)

 

ESSENTIAL READINGS: 

1.   Maindonald,John,Braun john  ,”Data  Analysis and  Graphics Using R”, CambridgeUniversity  Press,2007

2.   Gardener Mark,”Beginning R: The  Statistical Programming Language “ Wiley India  Pvt.Ltd. 2015

3.   Srivasa  K.G., Siddesh G M,Shetty,” Statistical Programming in R”, Oxford University Press  2017

4.   Business Statistics: Naval Bajpai,  Pearson

 

REFERENCES: 

SUGGESTED READINGS:

1.   Braun  W J, Murdoch  D J (2007): A First Course  in Statistical Programming with R.Cambridge University  Press. New York

2.   Rakshit, Sandip(2007):R Programming for Beginners

3.   Cotton, Richard(2016) Learning R: A Step-by-Step Function Guide  to Data  Analysis

e RESOURCES

1.    R , w3school,http://www.w3schools.com [2].

2.    NOC: Essentials of Data  Science With R Software 1: Probability and  Statistical Inference, IIT Kanpur: https://nptel.ac.in/courses/111104146

3.    R, Spoken Tutorial: https://spoken-tutorial.org/

JOURNALS

1.   Journal of the  Brazilian Computer Society, SpringerOpen, https://journal- bcs.springeropen.com/

2.   Journal of Internet Services and  Applications, SpringerOpen:https://jisajournal.springeropen.com/

 

Academic Year: 
2025-26 [3]

Footer Menu

  • Home
  • Univ Home
  • Contact Us
  • About Us
  • Site Map
  • Downloads
  • Feedback
  • Jobs
  • Site Login

Follow Computer Science & IT on:

Facebook Twitter YouTube

IIS (Deemed to be University)

Gurukul Marg, SFS, Mansarovar, Jaipur 302020, (Raj.) India Phone:- +91-141-2400160-61, 2397906-07, Fax: 2395494, 2781158


Source URL: https://www.csit.iisuniv.ac.in/courses/subjects/data-analytics-using-r-2

Links:
[1] https://www.csit.iisuniv.ac.in/courses/subjects/data-analytics-using-r-2
[2] http://www.w3schools.com/
[3] https://www.csit.iisuniv.ac.in/academic-year/2025-26